Stern- und Planetenentstehung Sommersemester 2020 Markus Röllig

Lecture 1: Observing the Cold ISM

http://exp-astro.physik.uni-frankfurt.de/star_formation/index.php

VORLESUNG/LECTURE

Raum: Physik - 02.201a dienstags, 12:00(c.t.) - 12:00 Uhr

SPRECHSTUNDE:

Raum: GSC, 1/34, Tel.: 47433, (roellig@ph1.uni-koeln.de) dienstags: 14:00-16:00 Uhr

Nr.	Thema	Termin
1	Observing the cold ISM	21.04.2020
2	Observing Young Stars	28.04.2020
3	Gas Flows and Turbulence Magnetic Fields and Magnetized Turbulence	05.05.2020
4	Gravitational Instability and Collapse	12.05.2020
5	Stellar Feedback	19.05.2020
6	Giant Molecular Clouds	26.05.2020
7	Star Formation Rate at Galactic Scales	02.06.2020
8	Stellar Clustering	09.06.2020
9	Initial Mass Function – Observations and Theory	16.06.2020
10	Massive Star Formation	23.06.2020
11	Protostellar disks and outflows – observations and theory	30.06.2020
12	Protostar Formation and Evolution	07.07.2020
13	Late Stage stars and disks – planet formation	14.07.2020

1 OBSERVING THE COLD ISM

"SF is perhaps the least understood process in cosmic evolution." (M. Krumholz)

- Wide range of physical processes involved
 → general theory difficult to formulate
- Interstellar gas out of which stars form is a supersonically turbulent plasma → MHD (we hardly understand subsonic hydrodynamic turbulence)
- SF influenced by gravity → added complexity
- ISM is a radiative fluid (continuum and line radiative processes)
- SF(ISM influenced by chemistry (formation & destruction of molecules & dust grains
 → changed TD of gas
- Variation of ionization state → coupling to magnetic fields

Comparison: stellar structure is governed by 4 equations!

1.10BSERVING TECHNIQUES

1.1.1 Observing H₂

Hydrogen is the most abundant element

- Atomic H
 - easy to observe
 - hyperfine transition @ 21 cm
 (1.4 GHz)

(1.4 GHz) briankoberlein.com e- spin parallel to p-spin => anti-parallel

=>

easy

n 2 100 cm

 $\Delta E \ll 1 K \Rightarrow$ can be excited everywhere

- Molecular H₂
 - @ high densities $H \rightarrow H_2$
 - H2 extremely hard to observe directly

Erot LEvib L Eel.

excitation of diatomic molecule (high to low energy)

- electronic
- vibrational
- rotational

Credit: NASA, ESA, STScI, J. Hester and P. Scowen (Arizona State University)

excite

p - spiz

most abundant species unobservable \rightarrow proxy species

1.1.2 Dust Emission (thermal)

ISM: mixture of gas & dust

Dust: emits thermal (continuum) radiation (black body)

Gas: emits line radiation

Cloud of gas ρ : mass density $\frac{3}{m^2}$ n: particle density m^{-3} mixed with dust @ temperature T

- \Rightarrow Gas and dust mixture has opacity κ_{ν} to radiation at frequency ν
- \Rightarrow Most of the mass in gas
- ⇒Most of the opacity due to dust (except at line frequencies)

Convention: κ_{ν} : opacity per gram of material with units of cm² g⁻¹

effective cross sectional area that is blocked per gram of gas sub-mm: typically $\kappa_{\nu} \sim 0.01 \text{ cm}^2 \text{g}^{-1}$

Draine 2003

⇒ cloud is optically thin to its thermal radiation

 \Rightarrow emitted intensity emissivity of gas of opacity κ_{ν}

$$j_{\nu} = \kappa_{\nu} \rho B_{\nu}(T) \text{ erg s}^{-1} \text{cm}^{-3} \text{sr}^{-1} \text{Hz}^{-1}$$

47

energy (erg) emitted in 1 sec by 1 cm³ of gas into a solid angle of 1 steradian (sr) in a frequency range of 1 Hz.

$$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{\frac{h\nu}{kT}} - 1} \quad \text{erg s}^{-1} \text{cm}^{-2} \text{sr}^{-1} \text{Hz}^{-1} \quad \text{Planck}$$

No radiation absorbed => intensity transmitted along a given line of sight: $I_{\nu} = \int j_{\nu} ds = \int \kappa_{\nu} \rho B_{\nu}(T) ds$

$$= \Sigma \kappa_{\nu} B_{\nu}(T) = \tau_{\nu} B_{\nu}(T)$$

 $au_{\mathcal{V}}$: optical depth along the line of sight at frequency u

$$\tau_{\nu} = \int_0^L \kappa_{\nu}(l) dl$$

Thermal dust emission map of Orion A south at $850\mu m$ (left) and at $450\mu m$ (right). (Johnstone and Bally 2006)

observe at various $\lambda \rightarrow \text{fit } N$, κ_{ν} , and T simultaneously

<mark>رمی</mark> Before Herschel:

very little multi λ data

because most emission in FIR

Composite 3-color image of IC 5146 (~1.6 deg2 field) produced from our PACS/SPIRE parallel-mode data at 70, 160, 250, 350 and 500 μ m. The color coding is such that red = SPIRE 500 μ m and 350 μ m, green = SPIRE 250 μ m and PACS 160 μ m, blue = PACS 70 μ m.

(Arzoumanian et al. 2011)

1.1.3 Dust Absorption

Instead of observing emission by dust \rightarrow absorption by dust against background stars

Pro

- 1. stars are bright & observation in near IR \rightarrow resolution much higher $_{A}$
- 2. κ_{ν} is no function of T \rightarrow uncertainty of T does not matter
- 3. κ_{ν} in IR much better known than in sub-mm

Con

1. $\kappa_{\nu}(IR) \gg \kappa_{\nu}(FIR) \rightarrow$ only applicable to diffuse clouds (dense fields absorb completely)

see Bok globules

2. field of background stars required

D

Abbildung 1 Thackeray's Globules: Dense, Opaque Dust

Best example: Pipe nebula

Pipe nebula extinction map (right) (Lombardi et al. 2006)

1.1.4 Molecular Lines

- Most info about SF from molecular lines
- Complex modelling necessary to interpret lines
- Rich in information
- Most sensitive
- Almost everything we know about GMCs outside of the Milky Way comes from studying emission in rot. lines of CO.

eventually thermal equilibrium (TE) => (Maxwell-)Boltzmann Distribution

Rate: $\left(\frac{dn_1}{dt}\right)_{\text{spont. emission}} = -A_{10} \cdot n_1$ (particles cm⁻³ s⁻¹) $[A] = \frac{1}{s} \qquad 1/A$: e-folding time for decay

$$\begin{aligned} \frac{dn_1}{dt} &= -A_{10}n_1 \\ = > \left(\frac{dn_1}{n_1}\right) = -A_{10}dt \\ \int_{n_{1,i}}^{n_{1,f}} \frac{dn_1}{n_1} &= \int_{t=0}^{t_1} -A_{10}dt \\ \ln(n_{1,f}) - \ln(n_{1,i}) &= -A_{10}t - 0 \\ \ln\left(\frac{n_{1,f}}{n_{1,i}}\right) &= -A_{10}t \\ = > \left(\frac{n_{1,f}}{n_{1,i}}\right) = \exp(-A_{10}t) \end{aligned}$$

if
$$t \to 1/A_{10}$$
 $\frac{n_{1,f}}{n_{1,i}} = \exp\left(-\frac{A_{10}}{A_{10}}\right) = \frac{1}{e} = 0.37$

after
$$1/A_{10}$$
 sec., 63% of excited states are decayed
E.g: CO J=1-0 $A = 7.2 \times 10^{-8} \text{ s}^{-1}$
HI, 21 cm line $A \cong 10^{-15} \text{ s}^{-1} = 3 \times 10^{7} \text{ a}$

1.1.4.3 Radiative and collisional transitions

Cold ISM: H₂ is dominant collision partner

 γ_{01} : rate coefficient for $[cm^3s^{-1}]$ for collisional excitation (difficult to compute -> exp)

 γ_{10} : rate coefficient for $[{\rm cm}^3 {\rm s}^{-1}]$ for collisional de-excitation

 $\left(\frac{dn_1}{dt}\right)_{coll.de-exc.}$

$$\left(\frac{dn_{1}}{dt}\right)_{coll.exc.} = \gamma_{01} n_{H_2} n_0$$

 $= -\gamma_{10} n_{H_2} n_1$

In equilibrium:

$$\frac{dn_1}{dt} = \left(\frac{dn_1}{dt}\right)_{coll.exc} + \left(\frac{dn_1}{dt}\right)_{coll.de-exc} = 0$$

$$n(\gamma_{01} n_0 - \gamma_{10} n_1) = 0$$

$$\frac{n_1}{n_0} = \frac{g_1}{g_0} e^{-\frac{E}{kt}}$$

$$n(\gamma_{01} n_0 - \gamma_{10} n_1) = p n_0 \left(\gamma_{01} - \gamma_{10} \frac{n_1}{n_0}\right) = 0$$

$$\gamma_{01} = \gamma_{10} \frac{g_1}{g_0} e^{-\frac{E}{kT}}$$

CRITICAL DENSITY AND DENSITY INFERENCE

Full equation of statistical equilibrium for 2 level-system

when $A_{10}/\gamma_{10}n$ increases	radiation becomes more important
	population in n_1 drops
=>	population is subthermal

Balance between A₁₀ and γ_{10} depends on n!

- If n=n_{crit} collisional excitation and radiative decay are equal n > n_{crit}: level population -> Boltzmann
 - n < n_{crit}: level underpopulated rel. to Boltzmann
 - -> consequences for line emission

Line emission per molecule:

$$\begin{split} \underbrace{\widehat{L}}_{n_{tot}} &= \underbrace{\widehat{EA_{10}n_1}}_{n_{tot}} = \frac{EA_{10}n_1}{n_0 + n_1} = \frac{EA_{10}\left(\frac{n_1}{n_0}\right)}{1 + \left(\frac{n_1}{n_0}\right)} \\ &= EA_{10}\frac{e^{-\frac{E}{kT}}}{1 + \frac{n_{crit}}{n}} \frac{1}{1 + \frac{e^{-\frac{E}{kT}}}{1 + \frac{e^{-\frac{E}{kT}}}{n}}} = EA_{10}\frac{e^{-\frac{E}{kT}}}{e^{-\frac{E}{kT}} + 1 + \frac{n_{crit}}{n}} \\ &= EA_{10}\frac{e^{-\frac{E}{kT}}}{Z + \frac{n_{crit}}{n}} \end{split}$$

$$n \ll n_{crit} \Rightarrow Z + \frac{n_{crit}}{n} \Rightarrow \frac{n_{crit}}{n} \Rightarrow \frac{1}{n_{tot}} \approx EA_{10} e^{\frac{E}{kT}} \left(\frac{n}{n_{crit}} \right)$$
Low densities: each molecule contributes an amount of energy proportional to the ratio of $\frac{n}{n_{crit}}$
n: H₂ density $\Rightarrow \frac{L}{n_{tot}}$ independent of n_{tot} but not of n
 $L \propto n_{tot} \times \frac{n}{n_{crit}}$ (every molecule emits)
 $n \gg n_{crit} \Rightarrow Z$ dominates denominator
 $\Rightarrow \frac{L}{n_{tot}} \approx EA_{10} \frac{e^{\frac{E}{RT}}}{Z}$
 $\frac{n_1}{n_{tot}}$ fraction of population in upper state
density independent => at given T we get a fixed amount of energy

below n_{crit} intensity is usually too small to be observable

=> observing molecular lines tells us about density

VELOCITY AND TEMPERATURE INFERENCE

prerequisite: opt. thin \rightarrow line width determined by velocity

distribution of emitting molecules

assume vel. distr. $\psi(v)$,

then the fraction of gas with velocities between v and v + dv is

$$\psi(v)dv$$
 and $\int_{\infty}^{\infty}\psi(v)dv=\emptyset$

in rest frame of molecule: emission -> delta function in frequency gas moving at velocity v relative to us produces emission at frequency

$$v \approx v_0 (1 - \frac{v}{c}), \quad \frac{v}{c} \ll 1$$

where v_0 is the rest frequency of the transition.

The line profile then is: $\phi(v) = \psi\left(c\left(1 - \frac{v}{v_0}\right)\right)$

Measuring $\phi(v)$ gives us $\psi(v)$

General: $\psi(v) = \psi_{thermal} + \psi_{non-thermal}$

 $\psi_{thermal}$: Maxwellian velocity distribution $\phi(v) \propto e^{-(v-v_{cen})^2/\sigma_v^2}$

center frequency
$$v_{cen} = v_0 \left(1 - \frac{\overline{v}}{c}\right)^{2}$$

 \bar{v} : mean velocity of gas along line of sight, σ_v :width

 $\sigma_{\nu} = \sqrt{(k T)/\mu}/c$ μ : mean mass of the emitting molecule

even complicated motions resemble a Maxwellian distribution because of the central limit theorem

FIG. 13.—Average ¹²CO (*thin lines*) and ¹³CO (*thick lines*) spectra for Ophiuchus (*left*) and Perseus (*right*), created by summing the spectra in all pixels for which the ratio of peak antenna temperature to rms noise is greater than 3. The multicomponent nature of Perseus is clearly visible, while Ophiuchus displays a more Gaussian-like profile.

To determine whether an observed line profile is the result of predominantly thermal or non-thermal motion we need to derive the temperature independently.

e.g.: observe multiple lines of the same species:

$$\frac{\mathcal{L}}{n_{tot}} = E A_{10} \frac{e^{-\frac{E}{kT}}}{Z + \frac{n_{crit}}{n}}$$

Δ

3 unknowns: *T*, *n*, *n*_{tot} observing 3 species => 3 equations

1.1.4.4 Complications

- optical depth
- chemistry (dissociation, freeze-out, formation, ...)
- elemental abundances
- ...

2 OBSERVATIONAL PHENOMOLOGY

2.1 GIANT MOLECULAR CLOUDS

In spiral galaxies, the molecular gas closely follows the spiral structure

Fig. 3. Total integrated intensity map of ¹²CO (J = 1-0) emission (contours) superposed on H1 emission (left, Rosolowsky et al. 2007) and star-formation rate (right) derived from the H α luminosity (Hoopes & Walterbos 2000) with extinction-correction by using MIPS 24 μ m data (Rieke et al. 2004). The contour interval and lowest contour are the same as in figure 2.

Tosaki et al. 2011

Figure 7. CARMA and NRO45 combined CO (J = 1-0) map of M51 with robust = -2.

2.2 INTERNAL STRUCTURE OF GMCs GMCs are not spheres

complex internal structure

filamentary, clumpy, most mass in low n structures

Koda et al. 2011

molecular gas is organized in discreet clouds

Giant Molecular Clouds (GMC)

$$M = 10^4 - 10^7 M_{\odot}$$

Fig. 3. ¹³CO 2–1 velocity channel maps of the Perseus region. The velocity range runs from 3 km s⁻¹ to 11 km s⁻¹ with an interval of 1 km s⁻¹ which is indicated on the top of each plot. The intensities are plotted from 0.7 K km s⁻¹ ($\sim 1\sigma$) to 15 K km s⁻¹.

velocity structure is similarly complex

velocity distribution much wider than thermal sound speed $(c_s \sim 0.2 \text{ km s}^{-1})$

MOVIE: NGC 1333 in 3D

from: A. Goodman's website:

https://www.cfa.harvard.edu/COMPLETE/astromed/

¹²CO: traces less dense gas, ¹³CO traces more dense gas

5= 8 Km/8

FIG. 1.—(a) Comparison of C¹⁸O J = 1-0 integrated emission (contours) in B68 superposed on a map of visual extinction derived by ALL01 and convolved to the IRAM resolution. The C¹⁸O contours begin at 0.2 K km s⁻¹ and step in units of 0.1 K km s⁻¹. The A_{ν} image is scaled from 0 to 27 mag. (b) Comparison of N₂H⁺ J = 1-0 integrated emission (contours) and the visual extinction image. The N₂H⁺ contours begin at 0.3 K km s⁻¹ and step in units of 0.2 K km s⁻¹. These maps were referenced to $\alpha = 17^{b}22^{m}38^{\circ}2$ and $\delta = -23^{\circ}49'34''_{.0}$ (J2000). The peak A_{ν} is located 6" east and 12" south of this position.

Credit: ESO & (Bergin et al. 2002) non thermal highly supersonic GMCs: subsonic (thermal broadening) 🗲 cores:

Figure 3. Velocity dispersion map derived from fitting all hyperfine components simultaneously. The protostar position is shown by the star, and the contour shows the contour $T_{peak} = 0.5$ K. The box on the map presents the region where we zoom in and present the corresponding spectra in the right panel, which shows only the main component of the NH₃(1,1) line. The centroid velocity and velocity dispersion obtained from the fit are displayed for each position. Top spectra in the right panel display two main hyperfine components clearly separated thanks to their low-velocity dispersion (the coherent core), while when moving to positions outside the core the lines get weaker and broader (evident by the disappearance of the gap between hyperfine components).

(Pineda et al. 2010)